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Abstract. It has been suggested that “flux adjustments” in 
climate models suppress simulated temperature variability. If 
true, this might invalidate the conclusion that at least some of 
observed temperature increases since 1860 are anthropogenic, 
since this conclusion is based in part on estimates of natural 
temperature variability derived from flux-adjusted models. We 
assess variability of surface air temperatures in 17 simulations of 
internal temperature variability submitted to the Coupled Model 
Intercomparison Project. By comparing variability in flux- 
adjusted vs. non-flux adjusted simulations, we find no evidence 
that flux adjustments suppress temperature variability in climate 
models; other, largely unknown, factors are much more important 
in determining simulated temperature variability. Therefore the 
conclusion that at least some of observed temperature increases 
are anthropogenic cannot be questioned on the grounds that it is 
based in part on results of flux-adjusted models. Also, reducing 
or eliminating flux adjustments would probably do little to 
improve simulations of temperature variability. 

Introduction 

The recent conclusion that humans have detectably 
influenced climate (Santer et al., 1995) has been questioned 
because it is based in part on estimates of natural climate 
variability obtained from climate models using “flux 
adjustments”. These are unphysical sources or sinks of heat, 
moisture and/or momentum sometimes added to climate 
models at the ocean-atmosphere interface; they reduce the 
tendency of simulations of the present climate to drift away 
from observations. It has been asserted (e.g., by Pierce et al., 
199.5) that flux adjustments may suppress variability in 
climate models. If so, studies attempting to detect human 
influences on climate may have overestimated the 
significance of observed temperature changes, because they 
rely in part on estimates of natural temperature variability 
derived from flux-adjusted models. Our examination of 
temperature variability in 17 climate model simulations does 
not support this hypothesis. We find major differences among 
climate models in temperature variability, but no evidence 
that flux adjustments suppress temperature variability. Factors 
other than the presence or absence of flux adjustments are of 
primary importance in determining amounts of temperature 
variability in climate model simulations. 
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Results 

The simulations we analyzed are 17 of the “control” 
(constant external forcing) simulations submitted to the 
Coupled Model Intercomparison Project (CMIP; Meehl et al. 
1997 or http:Nwww-pcmdi.llnl.gov/cmip). One simulation 
which used prescribed sea ice extents, and one which restored 
sea-surface salinities to observed values, were excluded from 
our analyses. In addition, we excluded the original CMIPl 
submission from Washington and Meehl (NCAR) in favor of 
their more recent results with the Parallel Coupled Model 
(PCM). The models used (Table 1) are global ocean- 
atmosphere-sea ice general circulation models. These 
simulations comprise nearly all of the constant-forcing 
simulations performed to date with this type of model. The 
simulations range in length from 24 to 1085 simulated years. 
The simulations use constant external forcing, and thus 
represent estimates of temperature variability due to sources 
internal to the climate system (not, for example, increasing 
atmospheric COZ, solar variability, or volcanoes). 
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Table 1: List of model simulations analyzed here, and their simulated temperature variabilities. This list includes 17 of the 20 
simulations submitted to the CMIP 1 project. The 4 rightmost columns give values for two measures oftemperature variabil@; these 
measures are defined in the text. For each measure of variability, values are shown for both the last 20 years of each simulation and 
for the full length of each simulation. Simulation lengths (years) are listed in column 4. 

We calculated two measures of temperature variability in 
these simulations. The first (“Variability I”) is based on 
global- and annual-mean surface air temperatures (SATs; the 
exact definition of SAT varies slightly from model to model). 
These data were first detrended by fitting and subtracting a 
least-squares line; then the standard deviation of each time 
series of residuals was calculated. Detrending helps avoid 
confusing the approach of the model solution to equilibrium 
with long-period variability. The second measure 
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Figure 1: Histograms showing surface air temperature (SAT) variability in 17 climate model simulations. The left and right 
columns show different measures of variability (Variability 1 and Variability 2, defined in the text). In the top panels, the results 
are based on the last 20 years of each simulation; in the lower panels the entire length of each simulation was used. In each panel 
we also show a t-value and the associated “one-sided” probability that the difference in means between the two classes of models 
is significant. In all cases, the flux adjusted models have more variability than the non-flux adjusted models. 

Figure 2: Relationship between time- and space-averaged SATs and high-latitude SAT variability in 17 CMIP simulations. The 
horizontal axis shows global mean SATs averaged over the last 20 years of each simulation. The vertical axis shows our 
“Variability 2” measure of SAT variability averaged over all latitudes poleward of 50 deg. The simulations with warmer time- 
and space-averaged SATs have less high-latitude SAT variability, presumably because of reduced effective heat capacity in ice- 
covered regions, and a smaller snow/ice-albedo feedback. The lines are least-squares fits to the non-flux adjusted (solid line) and 
flux adjusted (dotted line) model results. The * indicates the observed climate. 
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Figure 1: Histograms showing surface air temperature (SAT) 
variability in 17 climate model simulations. The left and right 
columns show different measures of variability (Variability 1 
and Variability 2, defined in the text). In the top panels, the 
results are based on the last 20 years of each simulation; in the 
lower panels the entire length of each simulation was used. In 
each panel we also show a t-value and the associated ‘<one- 
sided” probability that the difference in means between the 
two classes of models is significant. In all cases, the flux 
adjusted models have more variability than the non-flux 
adjusted models. 

Figure 2: Relationship between time- and space-averaged 
SATs and high-latitude SAT variability in 17 CMIP 
simulations. The horizontal axis shows global mean SATs 
averaged over the last 20 years of each simulation. The 
vertical axis shows our “Variability 2” measure of SAT 
variability averaged over all latitudes poleward of 50 deg. The 
simulations with warmer time- and space-averaged SATs 
have less high-latitude SAT variability, presumably because 
of reduced effective heat capacity in ice-covered regions, and 
a smaller snow/ice-albedo feedback. The lines are least- 
squares tits to the non-flux adjusted (solid line) and flux 
adjusted (dotted line) model results. The * indicates the 
observed climate. 
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